
© 2004, Craig Van Slyke and John Day 1

Conceptual Design: Entity Relationship Models

Craig Van Slyke, University of Central Florida
cvanslyke@bus.ucf.edu

John Day, Ohio University

Objectives

• Define terms related to entity relationship modeling, including entity, entity instance,
attribute, relationship, cardinality, and foreign key.

• Describe the entity modeling process.

• Discuss how to draw an entity relationship diagram.

• Describe how to recognize entities, attributes, relationships, and cardinalities.

• Describe how to model supertype/subtype structures and unary relationships.

Overview

The ability of a database designer to understand and model the information that an organization
uses is a critical design skill. Data modelers use a variety of tools and techniques to understand
an organization’s data. In order to understand how to properly model data, you must become
familiar with a modeling approach known as entity relationship modeling, which is the subject
to of this chapter.

Entity-relationship (E-R) modeling is one approach to semantic modeling. When database
designers attempt to understand and represent meaning, they are engaged in semantic modeling,
which can help in making database design more systematic (Date, 1990). Although a number of
approaches to semantic modeling exist, this chapter focuses on entity relationship modeling.
More specifically, we use E-R modeling to carry out conceptual data modeling

ER modeling, introduced by Chen (1976) consists of a number of activities that help database
designers understand the objects the organization wants to store information about, the important
characteristics of these objects and the associations among various objects.

The Entity Relationship Diagram

The end result of E-R modeling is the E-R diagram (ERD), a graphical representation of the
logical structure of a database. An ERD serves several purposes. First, the database
analyst/designer gains a better understanding of the information to be contained in the database
through the process of constructing the ERD. Second, the ERD serves as a documentation tool.
Finally, the ERD is used to communicate the logical structure of the database to users. In
particular, the ERD effectively communicates the logic of the database to users.

© 2004, Craig Van Slyke and John Day 2

Entities

The E-R modeling process identifies three basic elements: entities, attributes and relationships.

An entity is a thing that can be distinctly identified (Chen, 1976). In database design, entities are
the “things” about which the database stores information. Entities can include, but are not limited
to

• tangible items, such as equipment,

• concepts, such as accounts,

• people, such as employees

• events, such as sales, or

• places, such as business locations.

The term entity type refers to a number of related items, while an entity instance refers to a
single occurrence of an entity type. For example, employee number 123-45-6789 refers to a
single occurrence, or entity instance, of the entity EMPLOYEE. The term entity refers to entity
type. In addition, note that entity occurrence is sometimes used rather than entity instance. In ER
diagrams, rectangles represent entities, as shown in Figure 1.

Employees Vehicles

Accounts Orders

Figure 1: Entity Examples

Attributes

An attribute is a single data value that describes a characteristic of an entity. Other terms such
as data item and field, describe the same essential concept.

Each entity has a corresponding set of attributes that represent the information about the entity
that the organization is interested in. For example, a university may wish to know the name,

© 2004, Craig Van Slyke and John Day 3

address, phone number, and major of each student. Put in database terms, STUDENT is the
entity of interest, and NAME, ADDRESS, PHONE, and MAJOR are the attributes of interest.

Attributes are represented by ellipses in the ER diagram. The name of the attribute is shown
inside the ellipse and a line is drawn from the attribute to its entity.

Primary Keys

Every entity must have a primary key. The primary key is an attribute or combination of
attributes that uniquely identifies an instance of the entity. In other words, no two instances of an
entity may have the same value for the primary key. Factors database designers must consider
when choosing a primary key are discussed later in this chapter.

Sometimes it is useful to use more than one attribute to form a primary key. When a primary key
for an entity is made up of more than one attribute the key is called a composite key. The terms
composite key and compound key are also used to describe primary keys that contain multiple
attributes.

When dealing with a composite primary key it is important to understand that it is the
combination of values for all attributes that must be unique. It is not necessary for each attribute
in the key to be unique. For example, the entity ENROLLMENT has a composite primary key
comprised of the attributes STUDENT_ID and COURSE_ID. Each instance of ENROLLMENT
must contain a unique combination of values for StudentID and CourseID. However, there can
be duplications of StudentID or CourseID. So, it is possible for many instances of
ENROLLMENT to have the value MIS100 for CourseID, but each of those instances must
contain different values for StudentID.

Students

PK StudentID

FirstName
LastName
Street
City
State
Zip
Phone
Major

Enrollment

PK CourseID
PK StudentID
PK Term

Grade

Figure 3: Entities with Attributes

Underlined attributes in Figure 3 indicate primary keys in the E-R diagram. Each attribute
involved in making up a composite primary key is underlined. In Figure 3, the entity
STUDENTS has nine attributes, including the primary key, which is StudentID. The entity
ENROLLMENTS has four attributes, and a composite primary key made up of the attributes
CourseID, StudentID and Term.

© 2004, Craig Van Slyke and John Day 4

Relationships

A relationship is an association among two or more entities. For example, a STUDENTS entity
might be related to a COURSES entity, or an EMPLOYEES entity might be related to an
OFFICES entity. An ellipse connected by lines to the related entities indicates a relationship in
an ERD, as shown in Figure 4. The line connecting the ORDERS and CUSTOMERS entities
indicates that these two entities are related to one another.

Customers

PK CustomerID

Name
Phone

Orders

PK OrderID

OrderDate

Place

Entity EntityRelationship

Figure 4: Entities and Relationship

Different relationship degrees exist. The degree of a relationship refers to the number of entities
involved in the relationship. Although others exist, it is often sufficient to understand the
meaning of three relationship degrees, unary, binary and ternary. A unary relationship (also
called a recursive relationship) is a relationship involving a single entity. A relationship between
two entities is called a binary relationship. When three entities are involved in a relationship, a
ternary relationship exists. Relationships that involve more than three entities are referred to as
n-ary relationships, where n is the number of entities involved in the relationship. Examples are
provided for unary, binary and ternary relationship later in this chapter.

In some cases, attributes may be attached to a relationship, rather than an entity. For example, a
GRADE attribute is a function of the combination of STUDENTS and COURSES, but is not
strictly a function of either entity by itself. Attaching GRADE to STUDENT would not indicate
that a STUDENT has a GRADE for a particular COURSE, while attaching GRADE to
COURSES doesn't show that the GRADE is for a particular STUDENT. Attaching the GRADE
attribute to the relationship between COURSES and STUDENTS shows that a value of GRADE
is dependent on an intersection of COURSES and STUDENTS. A similar argument can be made
for TERM. Figure 5 illustrates how to show this on an E-R Diagram.

© 2004, Craig Van Slyke and John Day 5

Students

PK StudentID

FirstName
LastName
Phone

Courses

PK CourseID

CourseTitle
CreditHours

Grade
Term

Take

Figure 5: Relationship with Attributes

Cardinality
Relationships can also differ in terms of their cardinality. Maximum cardinality
refers to the maximum number of instances of one entity that can be associated
with a single instance of a related entity. Minimum cardinality refers to the
minimum number of instances of one entity that must be associated with a single
instance of a related entity. The following examples of binary relationships
illustrate the concept of maximum cardinality (Fig. 6). Minimum cardinality is
discussed in more detail later in the next section. If one CUSTOMER can be
related to only one ACCOUNT and one ACCOUNT can be related to only a
single CUSTOMER, the cardinality of the CUSTOMER-ACCOUNT relationship
is one-to-one (1:1). [Note that each cardinality type is followed by a shorthand
notation in parentheses.]

If an ADVISOR can be related to one or more STUDENTS, but a STUDENT can
be related to only a single ADVISOR, the cardinality is one-to-many (1:N).

Finally, the cardinality of the relationship is many-to-many (M:N) if a single
STUDENT can be related to zero or more COURSES and a single COURSE can
be related to zero or more STUDENTS. Further examples are provided later in
this chapter.

In E-R diagrams, cardinality is represented by symbols attached to the relationship line. A single
vertical line intersecting the relationship line indicates a "one" cardinality. A crowfoot symbol
indicates a "many" cardinality. Figure CARDINALITY shows ER diagrams with cardinality
symbols. Figure 6(a) shows the E-R diagram for a 1:1 relationship, Figure 6(b) shows a 1:N
relationship, and Figure 6(c) shows a M:N relationship. The symbols closest to the entities are
the maximum cardinality symbols. We'll cover the symbols for minimum cardinalities later.

© 2004, Craig Van Slyke and John Day 6

Students

PK StudentID

FirstName
LastName
Phone

Courses

PK CourseID

CourseTitle
CreditHours

Grade
Term

Take

Customers

PK CustomerID

Name
Phone

Accounts

PK AccountID

DateOpened
Status

Have

Students

PK StudentID

FirstName
LastName
Phone

Advisors

PK AdvisorID

FirstName
LastName
Phone

Advise

One

ManyOne

Many

Figure 6: (a) 1:1 relationship (b) 1:N relationship (c) M:N relationship Cardinality Symbols

When determining the cardinality of relationships, it is important to remember that cardinality
specifies how many instances an entity can be related to a single instance of a related entity. The
trick to determining the cardinality of a relationship is to determine the cardinality of one side at
a time.

For example, suppose you want to determine the cardinality of the STUDENTS to ADVISORS
relationship. The first step is to determine how many STUDENTS one ADVISOR can be related
to. One ADVISOR can be related to many STUDENTS. To represent this on an E-R diagram,
show the "many" symbol (the crowfoot) next to the STUDENT entity. Next, you need to
determine how many ADVISORS one STUDENT can be related to. While this may vary from
school to school, in this case the answer is one. To show this on the E-R diagram, put the "one"
symbol (vertical line) next to the ADVISOR entity. Figure 7 illustrates the process.

© 2004, Craig Van Slyke and John Day 7

Students

PK StudentID

FirstName
LastName
Phone

Advisors

PK AdvisorID

FirstName
LastName
Phone

Advise

Many

Students

PK StudentID

FirstName
LastName
Phone

Advisors

PK AdvisorID

FirstName
LastName
Phone

Advise

One

Step 1:

Step 2:

One advisor (say Smith) can advise many students.

One student (say Jones) can be advised by only one advisor

Figure 7: Determining Cardinalities

If you have trouble determining the cardinality of a relationship, the following method may help.
Assign a name to the entity instance you want to hold to one. For example, if you were having
trouble determining the cardinality of the ADVISOR to STUDENT relationship you could ask
yourself, "How many ADVISORS can Jan Smith have?", or "How many STUDENTS can Dr.
Smith advise?"

Creating an E-R Diagram

A number of steps are required to create an E-R diagram that accurately represents the
organizational data. These steps are summarized in Figure 8 and discussed in this section.

Model
Entities &
Attributes

Choose
Primary

Keys

Model
Relationships

Determine
Cardinalities

Check the
Model

Figure 8: Steps in Building an E-R Diagram

© 2004, Craig Van Slyke and John Day 8

E-R Modeling Example: An ORDER ENTRY FORM

To illustrate the steps in building an E-R diagram, we’ll analyze an Order Entry Form. A sample
of the Order Entry Form is shown in Figure 9.

ORDER-NO: 44-44-4444 CUSTOMER-ID: 1002

DATE: 10/31/98 CUST-NAME: ABC Inc.

PROD-ID DESCRIPTION PRICE QTY EXT

A123 STEREO SYSTEM 375.00 2 750.00

C235 8" SPEAKER 150.00 8 1,200.00

X002 SPEAKER WIRE 10.00 5 50.00

 TOTAL 2,000.00

Figure 9: Order Entry Form

Step 1: Model the Entities

The first step in creating an E-R diagram is to model the entities. Recall that an entity is simply
something about which the organization wishes to store data. A number of information sources
may be helpful when identifying entities, including forms, data entry screens, reports and user
interviews.

It is important to realize that an entity is basically defined by its attributes, so when identifying
entities look for groups of related attributes. It is particularly helpful to look for possible primary
keys for an entity. Generally, when a form has an identifier for a possible entity it is likely to be
the entity. For example, if a form contains a space for a customer number, then the database (and
the E-R diagram) probably needs to contain a CUSTOMER entity.

In user interviews, be particularly aware of nouns that the user mentions. Generally, entities are
named with nouns such as CUSTOMER, STUDENT, and EQUIPMENT. Nouns that crop up
often in the course of a user interview are good candidates for entities.

As you identify candidate entities, also try to determine attributes for the entities. An effective
technique is to write down any attributes you identify next to the entity to which they belong.
This may provide a means for you to distinguish between entities and attributes, which we
discuss later in this section.

Another useful E-R modeling technique employed by database analysts is to highlight each item
on a form, report, transcript or other information source to indicate that the item has been
modeled. For example, when analyzing a form mark each item on the form as you write it on
your list of possible entities and attributes. This can serve as a useful check. You can go back
through each information source and make sure each important item is marked.

© 2004, Craig Van Slyke and John Day 9

At this stage be liberal in identifying entities. If there is any possibility that some item on a form
or some sentence in an interview identifies an entity, include it in the list of possible entity. It is
more difficult to identify entities that are missed than it is to remove candidate entities that turn
out not to be entities required in the database. Most of the potential entities that are later rejected
turn out to be attributes of an entity rather than entities in their own right. These can be culled out
later.

In the case of the Order Entry example, there are several candidate entities. The initial analysis of
the Order Entry Form indicates that there are three entities that are clearly represented on the
form: ORDER, CUSTOMER, and PRODUCT.

After identifying the entities, it may be necessary to make some assumptions. For example, when
deciding which attributes to place with each entity, we must make an assumption about PRICE.
If the price of a product does not change from one order to another, then PRICE is a function of
PRODUCT. If, however, different orders for the same product have different prices, then PRICE
is a function of the relationship between PRODUCT and ORDER. In actual practice, the analyst
must consult with the user representative to determine which view is correct. We will make the
assumption that PRICE varies for all orders—PRICE is an attribute of PRODUCT. Note that the
attribute QTY (quantity) is purposely absent from the list in order to illustrate the process of
checking the ERD.

Table 5.1 shows the initial list of entities and attributes identified in the analysis of the Order
Entry form.

Entity Attributes

ORDER ORDER-NO, DATE, TOTAL

PRODUCT PROD-ID, DESCRIPTION, PRICE

CUSTOMER CUSTOMER-ID, CUST-NAME

Table 5.1: Entity List for the Order Entry Form

Once the list of candidate entities and their attributes is complete, the database analyst must
determine which entities need to be in the database and which should be excluded. These
decisions are based on whether a candidate entity is an entity or an attribute. Many of the
candidate entities clearly belong in the database the most likely candidate entities that should be
rejected are those for which no attributes have been identified. If you are unable to find any
attributes for an entity, that entity is probably in reality an attribute for another entity. For
example, CUSTOMER_NAME might be identified as a possible entity. However, no attributes
can be identified for CUSTOMER_NAME. This leads to the conclusion that
CUSTOMER_NAME is not an entity, but is better considered an attribute of the CUSTOMER
entity.

© 2004, Craig Van Slyke and John Day 10

Not all cases are so clear, however. Take the example of ADDRESS. Perhaps a number of
attributes were identified for this candidate entity, such as NUMBER, STREET, CITY, STATE,
and POSTAL_CODE. Does the presence of these potential attributes of ADDRESS indicate that
ADDRESS is an entity? Although in some situations this will be the case, more often all of these
should be attributes of some other entity, such as CUSTOMER. Resolving these types of
situations becomes easier with more experience in data modeling and greater knowledge of the
organization.

Step 2: Choose Primary Keys

After identifying and modeling each entity and its attributes, primary keys must be chosen for
each entity. For many entities, the primary key is obvious or already in place in the
organization's existing information systems. For example, a university may already be using a
student identification number. In such cases, the best course of action is to retain the existing
key.

When a primary key does not exist and is not obvious, candidate keys must be identified. The
major requirement for an attribute to be a primary key is that the attribute uniquely identifies
instances of the entity. In other words, for each instance of the entity the value of the attribute
must be unique. In addition, the proper functioning of the database requires that primary keys
can never be null. The primary key for each entity must always have a unique, valid value for
each instance of the entity. Combining these two requirements results in each instance of an
entity always having a one and only one primary key (even if it’s a composite primary key), and
each primary key is unique.

Other characteristics of primary keys are also desirable. In general, a good primary key is what is
sometimes called "data-less." This means that no actual information is contained in the primary
key. An account number, for example, typically contains no useful information and serves no
purpose other than to identify an account. Primary keys that are data-less also posses another
desirable characteristic—they never change. Primary keys whose values change over time lead to
a number of problems with maintaining the database.

An example illustrates the problem with using a primary key that does not meet the
characteristics in Table 5.2.

Desirable Primary Key Characteristics

1. Uniquely identifies an entity instance.

2. Non-null (always has a value)

3. Data-less

4. Never changes

Table 5.2: Characteristics of a Good Primary Key

© 2004, Craig Van Slyke and John Day 11

Suppose that a database designer decided to make the primary key of the entity CUSTOMER the
customer's phone number. Assume for the moment that each customer has a phone number and
that no two customers can have the same phone number. In other words, assume that the attribute
PHONE is unique and non-null. While this is enough for PHONE to serve as the primary key of
CUSTOMER, problems may occur because PHONE is not data-less, and is also subject to
change. What happens if a customer changes his or her phone number? Should the database be
updated to reflect a new value for a primary key? This causes a number of database maintenance
problems. These maintenance problems stem from using the primary key to link records in
different tables. If the primary key value is changed for a record in the CUSTOMER table,
related records in other tables must also be changed. Then, it is better to simply leave the old
phone number in, but this introduces an inaccuracy in the database.

When no suitable primary key can be found among the existing attributes for an entity, it is
acceptable, and in fact usually a good idea, to simply create a new attribute. These newly created
primary keys are counters that increment with each new instance of an entity in the same manner
in which a check number increments from one check to the next.

For the Order Entry example, we need to identify primary keys for three entities: ORDER,
PRODUCT, and CUSTOMER. Fortunately, all of these entities have attributes that make
acceptable primary keys. For ORDER, ORDER-NO is a good choice for the primary key, for
PRODUCT, PROD-ID makes an acceptable key, and CUSTOMER-ID is a good key for
CUSTOMER. Notice that all of these satisfy our requirements for a primary key. They are
unique for each occurrence of the entity. They will never be null. They are data-less, and they are
not subject to change.

Once all of the entities and their attributes and primary keys are identified, the actual drawing of
the E-R diagram can begin. Simply draw a rectangle for each entity, labeling the rectangle with
the entity name. Then add an ellipse for each attribute, making sure each is labeled and
connected to the proper entity. Finally, indicate primary keys by underlining each primary key
attribute. Figure 10 shows the results for the Order Entry example.

© 2004, Craig Van Slyke and John Day 12

Products

PK ProductID

Description
RetailPrice

Orders

PK OrderID

OrderDate

Customers

PK CustomerID

CustomerName

Figure 10: Order Entry Form Entities and Attributes

When all of the entities, attributes and primary keys are modeled, it is time to identify and model
the relationships between entities.

Step 3: Model Relationships

Relationships among entities are a critical part of the Entity Relationship Diagram. When these
relationships are implemented in the database, they provide the links among the various tables
that give the database its flexibility. To maximize the flexibility of a database, relationships
must be properly identified and modeled.

Many relationships are relatively easy to recognize, such as those between ORDERS and
CUSTOMERS, or between STUDENTS and COURSES. Others, however, are less clear.
Although becoming truly proficient at recognizing relationships requires experience and practice,
there are some general guidelines that can help the database analyst recognize relationships.

When examining forms, reports and entry screens, be on the lookout for entities whose attributes
appear on the same form, report or screen. Analysis of the Order Entry Form (Figure 9) reveals
three entities: CUSTOMER, ORDER, and PRODUCT. We can conclude that these entities may
be related to one another. But how are they related? In cases where the form being analyzed only
represents two entities, the relationship is fairly obvious—the relationship is between the two
entities. However, with the Order Entry Form, there are three entities represented. Further
consideration is required to determine how these entities are related. Knowing something about
the organization is particularly helpful in such situations.

© 2004, Craig Van Slyke and John Day 13

In the case of the Order Entry Form example, ORDER and CUSTOMER are related, as are
ORDER and PRODUCT. However, we know that there may not necessarily be a relationship
between PRODUCT and CUSTOMER. Because both are related to ORDER we can report which
products are ordered by a particular customer.

In some cases, the analyst works from user interviews, rather than forms. In these cases, the
analyst can examine transcripts of user interviews to determine the relationships among entities.
Often users mention related entities in the same sentence. Consider the excerpt from a user
interview shown in Figure 11. Notice how the user talks about products and orders in the same
sentence. Once CUSTOMERS and ORDERS are identified as entities, mentioning both in the
same comment is a good indication that the entities are related. This interview also tells us that
we need to store some additional information about products. It also lets us know that there are
two prices, a selling price and a retail price. We'll deal with these later.

ANALYST: What information do you need to know about orders?

USER: Well, for each order, we need to know the order identifier and date as
well as the customer placing the order.

 We also need to know what products are included in each order along with
the quantity and selling price for each product on the order.

ANALYST: What information do you need to know about products, beyond the
information needed for an order?

USER: Of course, we need a product ID and description. Oh yea, we also need to
store a standard selling price, you know, a retail price.

Figure 11: Excerpt from a User Interview

As you identify relationships, note them on the E-R diagram as discussed earlier. Assign some
meaningful name to the relationship and add the name to the relationship diamond. When having
difficulty in coming up with a relationship name, many analysts simply combine the names of
the entities on either side of the relationship. For example, a relationship between STUDENT
and MAJOR could be called STUDENT-MAJOR. The diagram for the Order Entry Form is
shown in Figure 12. The lines connecting the entities are relationships are shaded because we'll
complete them by adding cardinalities in the next step.

© 2004, Craig Van Slyke and John Day 14

Products

PK ProductID

Description
RetailPrice

Orders

PK OrderID

OrderDate

Customers

PK CustomerID

CustomerName

Contain

Place

Figure 12: Relationships for Order Entry Database

After all of the relationships are modeled in the E-R diagram, the cardinalities of the relationship
must be determined.

Step 4: Determine Cardinalities

Recall that there are both maximum and minimum cardinalities. The maximum cardinality of a
relationship is the number of instances of one entity in a relationship that can be related to a
single instance of another entity in the relationship. In contrast, the minimum cardinality is the
number of instances of one entity that must be related to a single instance of the related entity.
Many novice database analysts find determining the cardinalities of relationships more confusing
than identifying entities, attributes and relationships. Thankfully there are ways to make this task
easier.

It is common to determine maximum cardinalities before minimum cardinalities. There are two
parts to the maximum cardinality of a binary relationship, one for each entity. Recall the example
of the ADVISOR-STUDENT relationship discussed earlier in this chapter. One ADVISOR can
be related to many STUDENTS. This indicates that the STUDENT side of the relationship has a
many cardinality. This is only half of the relationship's cardinality, however. To complete the
cardinality, we must recognize that one STUDENT can be related to only a single ADVISOR.
This tells us that the ADVISOR side of the relationship has a cardinality of 1. Thus, the
cardinality of the ADVISOR-STUDENT relationship is one-to-many.

One technique that often helps analysts determine the proper cardinality of a relationship is to
give the instance of the single instance side of the relationship a name. For example, consider
trying to determine the cardinality of the STUDENT-COURSE relationship. First, hold the

© 2004, Craig Van Slyke and John Day 15

STUDENT entity to a single instance to determine the cardinality of the COURSE side of the
relationship. This is easier to do if, rather than saying "How many COURSES can a STUDENT
be related to?" say "How many COURSES can Mary Wilson be related to?" The answer, of
course, is many, so the COURSE side of the relationship has a many cardinality. To determine
the cardinality of the STUDENT side of the relationship, ask "How many students can be related
to MIS380?" Once again, the answer is many, indicating that the STUDENT side of the
relationship also has a many cardinality. When asking these cardinality questions, remember that
you are always determining what cardinality symbol to draw next to the entity you are not
holding to one instance.

Let's return to the Order Entry Form example. There are two relationships, one between
PRODUCT and ORDER, and the other between ORDER and CUSTOMER. One instance of
ORDER can be related to many instances of PRODUCT. In other words, one ORDER can
contain many PRODUCTS. Thus, the cardinality from ORDER to PRODUCT is many. Turning
to the other side of the relationship, we can see that one instance of PRODUCT can be related to
many instances of ORDER—a single PRODUCT can be on many ORDERS. So, the cardinality
from PRODUCT to ORDER is many. Combining the two sides gives us a many-to-many
cardinality between ORDER and PRODUCT.

Now we must analyze the relationship between CUSTOMER and ORDER. A single ORDER
can be related to only one CUSTOMER. In other words, a single ORDER can't be placed by
more than one CUSTOMER. This means that the cardinality from ORDER to CUSTOMER is
one. On the other side, a single CUSTOMER can place many ORDERS, so the cardinality from
CUSTOMER to ORDER is many, and we can say that the cardinality of the CUSTOMER-
ORDER relationship is one-to-many.

Now the minimum cardinalities must be determined. Both maximum and minimum cardinalities
are determined by business rules. However, cardinalities are sometimes less obvious than others
when the analyst does not have good knowledge of the organization. For example, it is relatively
easy to determine that an ORDER must be related to at least one CUSTOMER, indicating that
the minimum cardinality from ORDER to CUSTOMER is one. The same can be said for
ORDER and PRODUCT. But, must a CUSTOMER be related to at least one ORDER? This is
less clear. Maybe the organization allows customers to set up accounts prior to placing their first
order. In this case, the minimum cardinality from CUSTOMER to ORDER is zero. We will
make this assumption for the Order Entry Form example. The situation is similar for the
minimum cardinality from PRODUCT to ORDER. It is reasonable to assume that we have
products that have not been ordered yet. If this is allowed, then the minimum cardinality from
PRODUCT to ORDER is zero.

Assumptions should only be temporary in actual practice. The analyst may have to make
assumptions in order to proceed with the analysis, but it is critical that the validity of the
assumptions be checked with the users before completing the analysis [and definitely before
implementation!].

Figure 13 shows the Order Entry ER Diagram with maximum and minimum cardinalities
indicated. It is now time for the last step in the E-R Diagramming process, checking the model.

© 2004, Craig Van Slyke and John Day 16

Products

PK ProductID

Description
RetailPrice

Orders

PK OrderID

OrderDate

Customers

PK CustomerID

CustomerName

Contain

Place

Figure 13: Incomplete Order Entry ERD with Cardinalities

Step 5 - Check the Model

The final step in creating an E-R diagram is often overlooked, but is just as important as any of
the previous steps. Analysts who fail to carefully check their ERD often produce diagrams of
poor quality, which of course should be avoided.

In order to check the ERD, you must return to your original information sources, the forms,
reports, and interviews with users. The basic idea is to go back to the original documents and
make sure that the structure represented in the ERD can satisfy the requirements. For example,
the representations in the ERD must be able to reproduce any forms or reports required. We will
use the Order Entry Form, which for convenience is reproduced below, as an example.

ORDER ENTRY FORM

ORDER-NO: 44-44-4444 CUSTOMER-ID: 1002

DATE: 10/31/98 CUST-NAME: ABC Inc.

PROD-ID DESCRIPTION PRICE QTY EXT

A123 STEREO SYSTEM 375.00 2 750.00

C235 8" SPEAKER 150.00 8 1,200.00

X002 SPEAKER WIRE 10.00 5 50.00

 TOTAL 2,000.00

Figure 9: Order Entry Form (repeated)

© 2004, Craig Van Slyke and John Day 17

The first step in using the Order Entry Form to check the ERD is to make sure that all of the
information contained in the form is also represented on the ERD. The easiest way to do this is to
take a copy of the form and check off each item as you verify that the item is on the ERD.

Examination of the Order Entry Form shows that there are three items that are not represented on
the ERD: EXT, TOTAL, and QTY. Both EXT, which is short for Extended, and TOTAL can be
computed, so it is not necessary to store these in the database, or represent them on the ERD. In
most cases, it is not necessary to store attributes that can be computed. There are times, however,
when it may make sense to store an item that can be computed. For example, TOTAL can be
computed, but doing so required retrieving data from multiple records. It may be that storing this
value improves performance enough to justify storing TOTAL.

Unlike EXT and TOTAL, QTY (Quantity) can not be computed, and therefore must be stored in
the database. Once the analyst decides that QTY should be represented on the ERD, the question
becomes how to represent it. Initial ideas might include representing QTY as an attribute of
ORDER, or of PRODUCT. However, QTY is not really an attribute of either of these, but is
properly represented as an attribute of the relationship between ORDER and PRODUCT. It is
not unusual to have attributes attached to relationships with a many-to-many cardinality.

There is an additional, more subtle, decision that must be made. This regards the price shown in
the order form. We must decide if price is a function of the product alone (as identified by
ProductID), or if the price depends on both the product and the order. To make this decision, we
must ask the following question. Is it possible for the same product to have different prices on
different orders? If the answer is no, then price depends on the product alone and the price
attribute should be included in the PRODUCTS entity. If the answer is yes, then product is a
function of both product and order, and should be placed on the relationship between
PRODUCTS and ORDERS. Typically, the latter is the case, so we'll place the price attribute on
the relationship. Note that we are calling this attribute "SellingPrice" to indicate that is the price
for which a product was sold a particular order. If we wanted to store a standard price, we would
probably call it "RetailPrice" or something similar. Using more specific attribute names leads to
less confusion when reading the ERD or resulting database.

Adding Quantity to the ERD results in the complete ERD, which is shown in Figure 14.

© 2004, Craig Van Slyke and John Day 18

Products

PK ProductID

Description
RetailPrice

Orders

PK OrderID

OrderDate

Customers

PK CustomerID

CustomerName

SellingPrice
Quantity

Contain

Place

Figure 15: Complete Order Entry ERD

Special Topics in E-R Diagramming

This section discusses some special situations that you may encounter in creating E-R diagrams.
These include resolving many-to-many relationships, supertype/subtype structures, and unary
relationships.

Resolving Many-to-Many Relationships

Some database analysts find it useful to resolve many-to-many relationships (M:N) in the ERD.
This makes the process of converting the ERD to a set of normalized relations easier.

In order to resolve M:N relationships, you must create an associative entity (which is sometimes
called a gerund), which is essentially an entity. It is called an associative entity because it is an
entity that associates two instances of other entities with one another. An associative entity is
shown in the ERD in the same way any other entity is shown. We use the many-to-many
relationship between PRODUCTS and ORDERS as an example to illustrate how to create an
associative entity.

Associative entities are relatively easy to create. Start by creating a new entity (the associative
entity) and using it to replace the many-to-many relationship. Next, we need to decide what
attributes to give the associative entity. Any attributes that were part of the converted

© 2004, Craig Van Slyke and John Day 19

relationship should also be in the associative entity. In our example, the attributes "Quantity" and
"SellingPrice" are attributes of the relationship, so we'll include these in the associative entity.

Next, we need to decide on a primary key for the associative entity. A standard practice is to use
the primary keys from the two original entities (PRODUCTS and ORDERS). In our example,
these primary keys are ProductID and OrderID. We may be able to use a combination of these
two entities as the primary key for our associative entity. Recall that a primary key that is made
up of more than one attribute is called a composite primary key (or composite key for short).
Before deciding to use ProductID + OrderID for our primary key, we must make sure that this
combination is unique. In other words, no combination of the same ProductID and OrderID may
be repeated in instances of the associative entity. Another way to think of this is to ask yourself if
a product can ever appear twice in the same order. The answer is "no." So, we can use ProductID
+ OrderID as our primary key. If the answer happened to be "yes" we would need to either add
one or more additional attributes to make the composite key unique, or we could simply create a
new attribute to use as a primary key.

The next step in creating the associative entity is to determine the cardinalities. Maximum
cardinalities are always the same when converting the M:N relationship. The maximum
cardinalities coming into both sides of the associative entity are both many, while the maximum
cardinalities going into the original entities is always a one.

Minimum cardinalities are a bit trickier, however. The minimum cardinalities for the original
entities are always one. Each instance of the associative entity must be related to exactly one
instance of each of the original entities. The minimum cardinalities going into the associative
entity depend on the minimum cardinalities going into the original entities. Let's look at an
example.

In the ERD shown in Figure 15, the minimum cardinality going into ORDER is a zero, while the
minimum cardinality going into PRODUCT is a one. This means that an instance of ORDER
must be related to at least one PRODUCT, but an instance of PRODUCT does not have to be
related to an ORDER. It is helpful to think of the associative entity as being an intersection of
PRODUCT and ORDER. Since it is possible for an instance of PRODUCT to not be related to
any instances of ORDER, it is also possible for a PRODUCT to not be related to any
intersections of PRODUCT and ORDER. In other words, the minimum cardinality on the
PRODUCT side of the associative entity is zero. Following the same logic, since each instance
of ORDER must be related to at least one instance of PRODUCT, the minimum cardinality of
the ORDER side of the associative entity is one. Figure 16 shows an annotated example of
converting a many-to-many relationship to an associative entity.

© 2004, Craig Van Slyke and John Day 20

Products

PK ProductID

Description
RetailPrice

Orders

PK OrderID

OrderDate

SellingPrice
Quantity

Contain

Products

PK ProductID

Description
RetailPrice

Orders

PK OrderID

OrderDate

ProductOrder

PK ProductID
PK OrderID

SellingPrice
Quantity

Relationship becomes an
associative entity.

Arrows show conversion of
cardinalities.

Include any attributes on
the original relationship.

Figure 16: Converting a Many-to-Many Relationship

While converting many-to-many relationships in an ERD is optional, in practice most database
designers do this conversion automatically. This is done because many-to-many relationships
must be converted before the model can be implemented as a database. Converting them in the
ERD saves time and effort in the next phase (logical design) of the database design and
implementation process.

Supertypes and Subtypes

Certain instances of an entity class can include attributes that are not needed in other instances of
the same entity class. In these cases, it is useful to use a supertype/subtype structure. This
structure is also called a generalization/specialization hierarchy. An example of the portion of
a database that deals with customer information will illustrate a generalization/specialization
hierarchy. Note that the number of attributes in our example is artificially limited for illustration
purposes.

For each CUSTOMER, we need to store an ID, and the customer's name. However, for retail
customers we also need to track the sales tax rate. For wholesale customers there is no need to
store the sales tax rate, but two additional attributes, discount and credit limit, need to be stored.
Notice how each type of reference needs to have some common and some special information.
This necessitates the use of a supertype/subtype structure.

© 2004, Craig Van Slyke and John Day 21

One possibility for handling this situation is to simply include all attributes in a single entity.
While this would work, it requires excessive storage space. If the database contains 1000
customers, 500 retail and 500 wholesale, each of the 1000 of the records in the database would
have one or two empty fields. Even though these fields are empty, they still take up space. The
supertype/subtype structure avoids this.

Figure 17 illustrates how the supertype/subtype structure is shown in an ERD. Note that it is not
necessary to show a primary key for the subtypes. They automatically include the same primary
key as the supertype. In addition, this is a case of a disjoint subtype, which is indicated by the
"d" in the circle underneath CUSTOMERS. This means that each supertype can be only one
subtype--it is not possible for one instance of CUSTOMERS to be both a RETAIL and a
WHOLESALE customer. Sometimes subtypes follow the overlap rule, which means that an
instance of the supertype may be an instance of more than one subtype. When the overlap rule is
in effect, an "o" is placed in the circle.

An additional characteristic of this example is that the subtypes are complete—there are no other
possible subtypes of the CUSTOMER supertype. This is known as the completeness constraint,
and is either a complete specialization (each supertype instance must be an instance of at least
one subtype), or a partial specialization (a supertype instance may or may not be an instance of a
subtype). The double line between CUSTOMERS indicates a complete specialization. A single
line would indicate a partial specialization.

Customers

PK CustomerID

CustomerName

RetailCust

TaxRate

WholesaleCust

DiscountRate
CreditLimit

d
Disjoint ruleTotal

specialization

Figure 17: Supertype/Subtype Hierarchy

© 2004, Craig Van Slyke and John Day 22

Now let's look at an example of a partial specialization with the overlap rule. Before doing so,
however, it is important that you understand that the disjoint/overlap rule is a completely
separate issue from the total/partial specialization. You can have any combination of these,

• disjoint with partial specialization,

• disjoint with total specialization

• overlap with partial specialization, or

• overlap with total specialization.

Figure 18 shows a supertype/subtype hierarchy that is a partial specialization with the overlap
rule in effect. In this example, the supertype is STUDENTS, which has the subtypes
ATHLETES, and MUSICIANS. A student can be both an athlete and musician (overlap rule) or
may be neither (partial specialization).

Students

PK StudentID

FirstName
LastName

Athletes

Position

Musicians

Instrument

o
Overlap rulePartial

specialization

Figure 18: Supertype/Subtype Example with Overlap and Partial Specialization

One way to recognize the need for a supertype/subtype hierarchy is when some instances of an
entity have special attributes that other instances do not. This was the case in the two examples
we have seen so far. Another reason to have a supertype/subtype hierarchy is when some
instances of an entity participate in relationships that others do not. An example of such a
situation is shown in Figure 19. There are two types of properties in the database, single family
homes and condominiums. For single-family homes, we need to store the lot size, but we don't
need to store this for condos. However, we need to know information about the property
manager who manages each condo. We need a subtype for condos because of the special
relationship to property manager. We only need to know about this relationship for condos, not
for single family homes. Note that sometimes a subtype has both special attributes and special
relationships.

© 2004, Craig Van Slyke and John Day 23

Properties

PK PropertyID

Street
City
State
Zip

CondoSingleFamily

LotSize

PropManagers

PK PropMgrID

FirstName
LastName

Manage

d

Figure 19: Supertype/Subtype Example Based on a Special Relationship

A key concept related to supertypes and subtypes is inheritance. Each subtype inherits all of the
attributes of the supertype. In other words, each subtype automatically includes all of the
attributes of the supertype. This alleviates the need to repeat these shared attributes in each
subtype. Note also that there are no cardinality symbols shown for the supertype/supertypes. This
is because the cardinality is understood to be a mandatory one (minimum and maximum are both
one) on the supertype side and an optional one (minimum zero and maximum one) on the
subtype side.

Unary Relationships

Sometimes, one instance of an entity is related to another instance of the same entity. For
example, one employee may manage another employee, or one course may have other courses as
prerequisites. Relationships such as these are known as unary relationships. They are sometimes
called recursive relationships.

Representing unary relationships in an ERD is done by drawing an ellipse to represent the
relationship, and then connecting it to the entity twice. The examples from the previous
paragraph are shown in Figure 20.

Note that maximum and minimum cardinality symbols are shown for the unary relationships.
From Figure 20, we can tell that a given employee may manage many other employees, or may
not manage any. We can also tell that each employee must be managed by exactly one employee.
From the diagram of the PREREQ relationship we can tell that a given course can have many
prerequisites or may have none, and that a course can be a prerequisite for many courses or may

© 2004, Craig Van Slyke and John Day 24

not be a prerequisite for any other courses. The type attribute is used to store the nature of the
prerequisite (whether it's a prerequisite or a co-requisite). You do not have to have any attributes
in a many-to-many unary relationship.

Employees

PK EmployeeID

FirstName
LastName

Manage

Courses

PK CourseID

Title
CreditHours

Type
Prereq

Figure 20 – Unary (recursive) Relationships

Although there are a number of situations not covered by the previous discussion, most situations
can be modeled through the use of the examples provided. As you gain more practice in
conceptual data modeling, you may realize that even complex models with many entities can be
constructed using the skills covered in this chapter.

Summary

Creating an entity relationship modeling is an important step in the process of creating a
database. The output of this modeling effort is an entity relationship diagram. The process of
creating an ERD helps the database analyst understand the information needs to end users. In
addition, the ERD provides a means of conveying this understanding to end users.

This chapter discussed and provided an example of the process of creating an ER diagram,
including how to identify entities, attributes, primary keys, and relationship. The symbols used in
drawing an ERD were also described.

